Tidal stretches do not modulate responsiveness of intact airways in vitro.
نویسندگان
چکیده
Studies on isolated tracheal airway smooth muscle (ASM) strips have shown that length/force fluctuations, similar to those likely occurring during breathing, will mitigate ASM contractility. These studies conjecture that, solely by reducing length oscillations on a healthy, intact airway, one can create airway hyperresponsiveness, but this has never been explicitly tested. The intact airway has additional complexities of geometry and structure that may impact its relevance to isolated ASM strips. We examined the role of transmural pressure (Ptm) fluctuations of physiological amplitudes on the responsiveness of an intact airway. We developed an integrated system utilizing ultrasound imaging to provide real-time measurements of luminal radius and wall thickness over the full length of an intact airway (generation 10 and below) during Ptm oscillations. First, airway constriction dynamics to cumulative acetylcholine (ACh) doses (10(-7) to 10(-3) M) were measured during static and dynamic Ptm protocols. Regardless of the breathing pattern, the Ptm oscillation protocols were ineffective in reducing the net level of constriction for any ACh dose, compared with the static control (P = 0.225-0.793). Next, Ptm oscillations of increasing peak-to-peak amplitude were applied subsequent to constricting intact airways under static conditions (5.0-cmH(2)O Ptm) with a moderate ACh dose (10(-5) M). Peak-to-peak Ptm oscillations < or = 5.0 cmH(2)O resulted in no statistically significant bronchodilatory response (P = 0.429 and 0.490). Larger oscillations (10 cmH(2)O, peak to peak) produced modest dilation of 4.3% (P = 0.009). The lack of modulation of airway responsiveness by Ptm oscillations in intact, healthy airways suggests that ASM level mechanisms alone may not be the sole determinant of airway responsiveness.
منابع مشابه
Tidal Stretches Differently Regulate the Contractile and Cytoskeletal Elements in Intact Airways
Recent reports suggest that tidal stretches do not cause significant and sustainable dilation of constricted intact airways ex vivo. To better understand the underlying mechanisms, we aimed to map the physiological stretch-induced molecular changes related to cytoskeletal (CSK) structure and contractile force generation through integrin receptors. Using ultrasound, we measured airway constricti...
متن کاملCan breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?
Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively l...
متن کاملLength oscillation mimicking periodic individual deep inspirations during tidal breathing attenuates force recovery and adaptation in airway smooth muscle.
Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called f...
متن کاملResponsiveness of the human airway in vitro during deep inspiration and tidal oscillation.
In healthy individuals, deep inspiration produces bronchodilation and reduced airway responsiveness, which may be a response of the airway wall to mechanical stretch. The aim of this study was to examine the in vitro response of isolated human airways to the dynamic mechanical stretch associated with normal breathing. Human bronchial segments (n = 6) were acquired from patients without airflow ...
متن کاملPhysiological responses of the airway wall and lung in hyperresponsive pigs.
Airway hyperresponsiveness (AHR) might be driven by mechanisms inherent to the airway wall, and/or by factors arising from outside the airways. A porcine model of allergen-induced AHR was utilized to investigate physiological responses in intact airways in vitro and their contribution to responsiveness in vivo. Responsiveness to acetylcholine (ACh) was measured in eight ovalbumin (OA)-sensitize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 109 2 شماره
صفحات -
تاریخ انتشار 2010